66 research outputs found

    Nonlinear Model Inversion-Based Output Tracking Control for Battery Fast Charging

    Get PDF
    We propose a novel nonlinear control approach for fast charging of lithium-ion batteries, where health- and safety-related variables, or their time derivatives, are expressed in an input-polynomial form. By converting a constrained optimal control problem into an output tracking problem with multiple tracking references, the required control input, i.e., the charging current, is obtained by computing a series of candidate currents associated with different tracking references. Consequently, an optimization-free nonlinear model inversion-based control algorithm is derived for charging the batteries. We demonstrate the efficacy of our method using a spatially discretized high-fidelity pseudo-two-dimensional (P2D) model with thermal dynamics. Conventional methods require computationally demanding optimization to solve the corresponding fast charging problem for such a high-order system, leading to practical difficulties in achieving low-cost implementation. Results from comparative studies show that the proposed controller can achieve performance very close to nonlinear and linearized model predictive control but with much lower computational costs and minimal parameter tuning efforts

    Analysis and Estimation of the Maximum Switch Current during Battery System Reconfiguration

    Get PDF
    Batteries are interconnected in series and/or parallel to meet wide-range power or energy demands in various industrial applications. To pursue the benefits of multiple connection structures in one system, reconfigurable battery systems (RBSs) have recently emerged for safe and efficient operation, extended energy storage and delivery, etc. Switches are the essential elements to enable the battery system reconfiguration, but selecting appropriate switches for RBS designs has not been systematically investigated. To bridge this gap, analytical expressions are derived in this paper to estimate the maximum switch current and its upper limit to facilitate the selection of RBS switches. An RBS prototype based on H-bridges is set up and experimental results verify the effectiveness and advantage of the proposed estimation method. These analytical expressions, relying only on resistances of batteries and switches, are readily applicable to practical RBS design and much more efficient than conducting numerous circuit experiments, simulation tests, or circuit analyses, especially for large-scale systems. Moreover, the analysis framework and estimation method proposed for series-parallel mutual conversion can be adaptively extended to other complex system reconfigurations to facilitate various RBS designs

    Control-Oriented Modeling of All-Solid-State Batteries Using Physics-Based Equivalent Circuits

    Get PDF
    Considered as one of the ultimate energy storage technologies for electrified transportation, the emerging all-solid-state batteries (ASSBs) have attracted immense attention due to their superior thermal stability, increased power and energy densities, and prolonged cycle life. To achieve the expected high performance, practical applications of ASSBs require accurate and computationally efficient models for the design and implementation of many onboard management algorithms, so that the ASSB safety, health, and cycling performance can be optimized under a wide range of operating conditions. A control-oriented modeling framework is thus established in this work by systematically simplifying a rigorous partial differential equation (PDE) based model of the ASSBs developed from underlying electrochemical principles. Specifically, partial fraction expansion and moment matching are used to obtain ordinary differential equation based reduced-order models (ROMs). By expressing the models in a canonical circuit form, excellent properties for control design such as structural simplicity and full observability are revealed. Compared to the original PDE model, the developed ROMs have demonstrated high fidelity at significantly improved computational efficiency. Extensive comparisons have also been conducted to verify its superiority to the prevailing models due to the consideration of concentration-dependent diffusion and migration. Such ROMs can thus be used for advanced control design in future intelligent management systems of ASSBs

    The Biosynthesis of Non-Endogenous Apocarotenoids in Transgenic Nicotiana glauca

    Get PDF
    Crocins are high-value compounds with industrial and food applications. Saffron is currently the main source of these soluble pigments, but its high market price hinders its use by sectors, such as pharmaceutics. Enzymes involved in the production of these compounds have been identified in saffron, Buddleja, and gardenia. In this study, the enzyme from Buddleja, BdCCD4.1, was constitutively expressed in Nicotiana glauca, a tobacco species with carotenoid-pigmented petals. The transgenic lines produced significant levels of crocins in their leaves and petals. However, the accumulation of crocins was, in general, higher in the leaves than in the petals, reaching almost 302 µg/g DW. The production of crocins was associated with decreased levels of endogenous carotenoids, mainly β-carotene. The stability of crocins in leaf and petal tissues was evaluated after three years of storage, showing an average reduction of 58.06 ± 2.20% in the petals, and 78.37 ± 5.08% in the leaves. This study illustrates the use of BdCCD4.1 as an effective tool for crocin production in N. glauca and how the tissue has an important impact on the stability of produced high-value metabolites during storage.This work was supported by grants BIO2016-77000-R from the Spanish Ministerio de Ciencia; Innovación y Universidades and SBPLY/17/180501/000234 from the Junta de Comunidades de Castilla-La Mancha (co-financed European Union FEDER funds); the National Natural Science Foundation of China (31870278); and the Spanish Ministry of Economy and Competitiveness (MINECO), Spain (RTI2018–097613-B-I00; PGC2018–097655-B-I00). C.Z. and L.G.G. are participants of the European COST action CA15136 (EUROCAROTEN) and Programa Estatal de Investigación Científica y Técnica de excelencia, Spain (BIO2015–71703-REDT and BIO2017–90877-REDT)

    The coordinated upregulated expression of genes involved in MEP, chlorophyll, carotenoid and tocopherol pathways, mirrored the corresponding metabolite contents in rice leaves during de-etiolation

    Get PDF
    Light is an essential regulator of many developmental processes in higher plants. We investigated the effect of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1/2 genes (OsHDR1/2) and isopentenyl diphosphate isomerase 1/2 genes (OsIPPI1/2) on the biosynthesis of chlorophylls, carotenoids, and phytosterols in 14-day-old etiolated rice (Oyza sativa L.) leaves during de-etiolation. However, little is known about the effect of isoprenoid biosynthesis genes on the corresponding metabolites during the de-etiolation of etiolated rice leaves. The results showed that the levels of α-tocopherol were significantly increased in de-etiolated rice leaves. Similar to 1-deoxy-D-xylulose-5-phosphate synthase 3 gene (OsDXS3), both OsDXS1 and OsDXS2 genes encode functional 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activities. Their expression patterns and the synthesis of chlorophyll, carotenoid, and tocopherol metabolites suggested that OsDXS1 is responsible for the biosynthesis of plastidial isoprenoids in de-etiolated rice leaves. The expression analysis of isoprenoid biosynthesis genes revealed that the coordinated expression of the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway, chlorophyll, carotenoid, and tocopherol pathway genes mirrored the changes in the levels of the corresponding metabolites during de-etiolation. The underpinning mechanistic basis of coordinated light-upregulated gene expression was elucidated during the de-etiolation process, specifically the role of light-responsive cis-regulatory motifs in the promoter region of these genes. In silico promoter analysis showed that the light-responsive cis-regulatory elements presented in all the promoter regions of each light-upregulated gene, providing an important link between observed phenotype during de-etiolation and the molecular machinery controlling expression of these genesThis research was funded by Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University (Project No. GSCS-2020-07); The National Natural Science Foundation of China (31870278); the Spanish Ministry of Economy and Competitiveness (MINECO), Spain (RTI2018-097613-B-I00; PGC2018-097655-B-I00); in part by the European Union Framework Pro- gram DISCO (613513) “from DISCOvery to products: a next-generation pipeline for the sustainable generation of high-value plant products”, the European Cooperation in Science and Technology project EUROCAROTEN (OC-2015-1-19780), Generalitat de Catalunya Grant 2017 SGR 828 to the Agricultural Biotechnology and Bioeconomy Unit (ABBU), and the International Science and Technol- ogy Cooperation Project 20190201013JC (from Jilin Provincial Science and Technology Department, China); GAU-KYQD-2019-06, Gansu Agricultural University

    Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol

    Get PDF
    The employment of single-atom catalysts in the catalytic transfer hydrogenation (CTH) of furfural (FF) to furfuryl alcohol (FAL) have never been effectively explored. Herein, Ni single-atoms supported on nitrogen doped carbon (Ni-SAs/NC) catalyst is synthesized and first ever utilized in CTH of FF to FAL. Atomically dispersed Ni-N4 sites change the electron density at the metal center and exhibit specific adsorption and desorption to FF and FAL, promoting an outstanding catalytic performance with turnover frequency (TOF) of 832 h-1 and selectivity as high as 97.1 at 130 oC for 2 h. Such performance is 9-fold higher than that of supported Ni nanocatalysts. The Ni-SAs/NC catalyst also exhibits superior stability for CTH of FF and excellent catalytic activity for other α,β-unsaturated aldehydes. This work provides a new strategy of producing green chemical compounds using catalytic biomass conversion and suggests the future application of long-lasting single-atom catalysts for emerging sustainable technologies
    corecore